1.2 Как можно помочь выпуску новых уроков и будет ли продолжение курса?
Привет, посетитель сайта ZametkiNaPolyah.ru! В этой записи мы еще не начинаем изучать компьютерные сети всё,…
Привет, посетитель сайта ZametkiNaPolyah.ru! Продолжаем изучать основы работы компьютерных сетей и протокол сетевого уровня IP, а если быть более точным, то его версию IPv4. На первый взгляд тема двоичных чисел и двоичной системы счисления не имеет отношения к протоколу IP, но если вспомнить, что компьютеры работают с нулями и единицами, то оказывается, что двоичная система и ее понимание — это основа основ, нам нужно научиться переводить числа из двоичной системы счисления в десятичную и наоборот: из десятичной в двоичную. Это нам поможет лучше понять протокол IP, а также принцип работы масок сети переменной длины. Давайте приступать!
Если тема компьютерных сетей вам интересна, то можете ознакомиться с другими записями курса.
Оглавление первой части: «Основы взаимодействия в компьютерных сетях».
Оглавление четвертой части: «Сетевой уровень: протокол IP и его версия IPv4».
Содержание статьи:
Прежде чем мы начнем, стоит вообще объяснить зачем нужна эта тема сетевому инженеру. Хотя вы могли убедиться в ее необходимости, когда мы говорили структуру IP-адреса, но, вы можете сказать, что есть IP-калькуляторы, которые существенно облегчают задачу по распределению IP-адресов, вычислению нужных масок подсетей/сетей и определению номера сети и номера узла в IP-адресе. Так-то оно так, но IP-калькулятор не всегда под рукой, это причина номер раз. Причина номер два заключается в том, что на экзаменах Cisco вам не дадут IP-калькулятор и все преобразования IP-адресов из десятичной системы счисления в двоичную вам придется делать на листе бумаги, а вопросов, где это требуется на экзамене/экзаменах по получению сертификата CCNA не так уж и мало, будет обидно, если из-за такой мелочи экзамен будет завален. Ну и наконец понимания двоичной системы счисления ведет к лучшему пониманию принципа работы компьютерных сетей.
Вообще сетевой инженер не обязан уметь делать перевод чисел из двоичной системы счисления в десятичную и наоборот в уме. Более того, это редко кто умеет делать в уме, в основном к такой категории относятся преподаватели различных курсов по компьютерным сетям, так как они сталкиваются с этим постоянно изо дня в день. Но при помощи листа бумаги и ручки вам стоит научиться осуществлять перевод.
Давайте начнем с простого и поговорим про двоичные цифры и числа, вы же знаете, что цифры и числа – это две разные вещи. Цифра – это специальный символ для обозначения, а число – это абстрактная запись, означающая количество. Например, чтобы записать, что у нас пять пальцев на руке мы можем использовать римские и арабский цифры: V и 5. В данном случае пять является одновременно и числом, и цифрой. А, например, для записи числа 20 мы используем две цифры: 2 и 0.
Итого, в десятичной системе счисления у нас есть десять цифр или десять символов (0,1,2,3,4,5,6,7,8,9), комбинируя которые мы можем записывать различные числа. Каким принципом мы руководствуемся, используя десятичную систему счисления? Да все очень просто, мы возводим десятку в ту или иную степень, для примера возьмём число 321. Как его можно записать по-другому, да вот так: 3*102+2*101+1*100. Таким образом получается, что число 321 представляет собой три разряда:
То есть в данной записи двойка это не просто двойка, а две десятки или два раза по десять. А тройка это не просто тройка, а три раза по сто. Получается такая зависимость: единица каждого следующего разряда в десять раз больше единицы предыдущего, ведь, что такое 300 – это три раза по сто. Отступление по поводу десятичной системы счисление было нужно, чтобы проще понять двоичную.
В двоичной системе счисления всего две цифры: 0 и 1. Поэтому запись числа в двоичной системе зачастую гораздо больше, чем в десятичной. За исключением чисел 0 и 1, ноль в двоичной системе счисления равен нулю в десятичной, аналогично и для единицы. Иногда, чтобы не перепутать в какой системе счисления записано число, используют суб-индексы: 26710, 1010012, 47128. Число в суб-индексе указывает на систему счисления.
Для записи двоичных чисел могут быть использованы символы 0b и &(амперсанд): 0b10111, &111. Если в десятичной системе счисления, чтобы произнести число 245 мы воспользуемся вот такой конструкцией: двести сорок пять, то в двоичной системе счисления чтобы назвать число, нам нужно произнести цифру из каждого разряда, например, число 1100 в двоичной системе счисления следует произносить не как тысяча сто, а как один, один, ноль, ноль. Давайте посмотрим на запись чисел от 0 до 10 в двоичной системе счисления:
Таблица 4.4.1 Числа двоичной и десятичной системы счисления
Думаю, логика должна быть уже понятна. Если в десятичной системе счисления для каждого разряда у нас было доступно десять вариантов (от 0 до 9 включительно), то в двоичной системе счисления в каждом из разрядов двоичного числа у нас только два варианта: 0 или 1.
Для работы с IP-адресами и масками подсети нам достаточно натуральных чисел в двоичной системе счисления, хотя двоичная система позволяет записывать дробные и отрицательные числа, но нам это без надобности.
Давайте лучше разберемся с тем, как преобразовать число из десятичной системы счисления в двоичную. И тут все на самом деле очень и очень просто, хотя на словах объяснить трудно, поэтому сразу приведу пример преобразования чисел из десятичной системы счисления в двоичную. Возьмем число 61, чтобы выполнить преобразование в двоичную систему, нам нужно это число делить на два и смотреть, что получается в остатке от деления. А результат деления снова делить на два. В данном случае 61 – это делимое, в качестве делителя у нас всегда будет двойка, а частное (результат деления) мы делим снова на два, продолжаем деление до тех пор, пока в частном не окажется 1, эта последняя единица и будет крайним левым разрядом. Рисунок ниже это демонстрирует.
4.4.1 Деление в столбик для перевода числа из десятичной системы счисления в двоичную
При этом обратите внимание, что число 61, это не 101111, а 111101, то есть выписываем результат с конца. Единицу в последнем частном смысла делить на два нет, поскольку в данном случае используется целочисленное деление, а при таком подходе получается так, как на Рисунке 4.4.2.
4.4.2 Целочисленное деление единицы на двойку
Это не самый быстрый способ перевода числа из двоичной системы счисления в десятичную. У нас есть несколько ускорителей. Например, число 7 в двоичной системе записывается как 111, число 3 как 11, а число 255 как 11111111. Все эти случаи до безобразия просты. Дело в том, что числа 8, 4, и 256 являются степенями двойки, а числа 7, 3 и 255 на единицу меньше этих чисел. Так вот для числа, которые на единицу меньше, чем число равное степени двойки, действует простое правило: в двоичной системе такое десятичное число записывается количеством единиц равным степени двойки. Так, например, число 256 это два в восьмой степени, следовательно, 255 записывается как 11111111, а число 8 это два в третьей степени, а это говорит нам о том, что 7 в двоичной системе счисления будет записано как 111. Ну а понять, как записать 256, 4 и 8 в двоичной системе счисления тоже не трудно, достаточно просто прибавить единицу: 256 = 11111111 + 1 = 100000000; 8 = 111 + 1 = 1000; 4 = 11 + 1 = 100.
Любой свой результат вы можете проверить на калькуляторе и по началу лучше так и делать.
4.4.3 Проверяем результат перевода на калькуляторе
Как видим, делить мы еще не разучились. И теперь можем двигаться дальше.
Преобразование чисел из двоичной системы счисления выполняется гораздо проще, чем перевод из десятичной в двоичную. В качестве примера перевода будем использовать число 11110. Обратите внимание на табличку ниже, она показывает степень, в которую нужно возвести двойку, чтобы потом в итоге получить десятичное число.
Таблица 4.4.2 Двоичное число и степень
Чтобы из этого двоичной числа получить десятичное, нужно каждое число в разряде умножить на два в степени, а затем сложить результаты перемножения, проще показать:
1*24+1*23+1*22+1*21+0*20 = 16+8+4+2+0=30
Откроем калькулятор и убедимся, что 30 в десятичной системе счисления, это 11110 в двоичной.
4.4.4 Проверяем результат перевода из двоичной системы в десятичную на калькуляторе
Видим, что всё сделано верно. Из примера видно, что перевод числа из двоичной системы счисления в десятичную выполняется куда проще, чем обратный перевод. Чтобы уверенно работать с протоколом IP нужно лишь помнить степени двойки до 28. Для наглядности приведу таблицу.
Таблица 4.4.3 Степень двойки
Нам больше и не нужно, поскольку максимально возможное число, которое можно записать в один байт (8 бит или восемь двоичных значений) равно 255, то есть в каждом октете IP-адреса или маски подсети протокола IPv4 максимально возможное значение — 255. В IP-пакете есть поля, в которых есть значения больше 255, но их нам рассчитывать не нужно.
Давайте теперь посмотрим на операции, которые можно выполнять с двоичными числами. Начнем с простых арифметических операций, а затем перейдем к операциям булевой алгебры.
Складывать двоичные числа не так уж сложно: 1+0 =1; 1+1=0 (в дальнейшем дам пояснение); 0+0=0. Это были простые примеры, где использовался лишь один разряд, давайте посмотрим на примеры, где количество разрядов больше, чем один.
101+1101 в десятичной системе это будет 5 + 13 = 18. Давайте посчитаем в столбик.
Таблица 4.4.4 Сложение двоичных чисел в столбик
Результат выделен оранжевым цветом, калькулятор говорит, что мы посчитали верно, можете проверить. Теперь давайте смотреть почему так получилось, ведь вначале я написал, что 1+1=0, но это для случая, когда у нас есть только один разряд, для случаев, когда разрядов больше, чем один, 1+1=10 (или два в десятичной), что логично.
Тогда смотрите, что получается, мы выполняем сложения по разрядам справа налево:
1. 1+1=10, записываем ноль, а единица уходит в следующий разряд.
2. В следующем разряде получается 0+0+1=1 (эта единица пришла к нам из результата сложения на шаге 1).
3. Дальше у нас выражение 1+1=10, поэтому в результат разряда мы пишем 0, а единица уходит в следующий.
4. Тут у нас есть единица только у второго числа, но сюда еще перенеслась, поэтому 0+1+1 = 10.
5. Склеиваем всё воедино:10|0|1|0.
Если лень в столбик, то давайте считать так: 101011+11011 или 43 + 27 = 70. Как тут можно поступить, а давайте смотреть, ведь нам никто не запрещает делать преобразования, а от перемены мест слагаемых сумма не меняется, для двоичной системы счисления это правило также актуально.
Можете проверить калькулятором, 1000110 в двоичной системе счисления это 70 в десятичной.
Сразу пример для вычитания одноразрядных чисел в двоичной системе счисления, про отрицательные числа мы не говорили, поэтому 0-1 не берем в расчет: 1 – 0 = 1; 0 – 0 = 0; 1 – 1 = 0. Если разрядов больше чем один, то тоже все просто, даже никаких столбиков и ухищрений не нужно: 110111 – 1000, это то же самое, что и 55 – 8. В результате мы получим 101111. И биться сердце перестало, откуда единица в третьем разряде (нумерация слева направо и начинается с нуля)? Да всё просто! Во втором разряде числа 110111 стоит 0, а в первом разряде стоит 1 (если примем, что нумерация разрядов начинается с 0 и идет слева направо), но единица четвертого разряда получается путем сложения двух единиц третьего разряда (получается этакая виртуальная двойка) и от этой двойки мы отнимаем единицу, которая стоит в нулевом разряде числа 1000, ну а 2 — 1 = 1, ну а 1 является допустимой цифрой в двоичной системе счисления.
Нам осталось рассмотреть умножение двоичных чисел, которое реализует за счет сдвига на один разряд влево. Но для начала давайте посмотрим на результаты одноразрядного умножения: 1*1 = 1; 1*0=0 0*0=0. Собственно, всё просто, теперь давайте посмотрим на что-нибудь более сложное. Возьмем числа 101001 (41) и 1100 (12). Умножать будем столбиком.
Таблица 4.4.5 Умножение двоичных чисел в столбик
Если из таблицы непонятно как так получилось, то попробую объяснить словами:
В общем-то, операция умножения не такая уж и сложная, нужно лишь немного попрактиковаться.
В булевой алгебре есть два очень важных понятия: true (истина) и false (ложь), эквивалентом для них служат ноль и единица в двоичной системе счисления. Операторы булевой алгебры расширяют количество доступных операторов над этими значениями, давайте на них посмотрим.
Операция «Логическое И» или AND эквивалентно умножению одноразрядных двоичных чисел.
1 2 3 4 |
1 AND 1 = 1; 1 AND 0 = 1; 0 AND 0 = 0; 0 AND 1 = 0. |
Единица в результате «Логического И» будет только в том случае, если оба значения равны единицы, во всех остальных случаях будет ноль.
Операция «Логическое ИЛИ» или OR работает по следующему принципу: если хотя бы одно значение равно единице, то в результате будет единица.
1 2 3 4 |
1 OR 1 = 1; 1 OR 0 = 1; 0 OR 1 = 1; 0 OR 0 = 0. |
Операция «Исключающее ИЛИ» или XOR даст нам в результате единицу только в том случае, если один из операндов равен единице, а второй равен нулю. Если оба операнда равны нулю, будет ноль и даже если оба операнда равны единице, в результате получится ноль.
1 2 3 4 |
1 XOR 1 = 0; 1 XOR 0 = 1; 0 XOR 1 = 1; 0 XOR 0 = 0. |
Операция «Логическое отрицание» или NOT является унарной, то есть применяется к одному операнду (до этого у нас были бинарные операторы, то есть чтобы они работали, значения должны быть и слева, и справа от оператора). Эта операция меняет значение операнда на противоположное.
1 2 |
NOT 1 = 0; NOT 0 = 1. |
Собственно, ничего сложного в булевых операциях нет.
Для того чтобы быстроразделять сети над подсети, нам нужно уметь переводить IP-адреса и маски сети из десятичной системы счисления в двоичную, поэтому стоит уделить данной теме внимания по тем причинам, которые я указал в самом верху.
Здравствуйте!
Мне кажется, здесь есть ошибка в части про Логическое И: «1 AND 0 = 1;»
Здесь же должен быть результат 0.
Очень нравятся Ваши статьи, спасибо!